

Simultaneously optimizing stability and solubility in protein design simulations

Ron Jacak, Kuhlman Lab August 5, 2009

The balance between stability and solubility

Can the Rosetta energy function be trained to design for stability and solubility?

Optimizing energy function weights

Weights optimized using the optE protocol developed by Andrew Leaver-Fay

Native sequence recovery dataset: 60 PDBs of various folds

 $\Delta\Delta G$ dataset: Yin et al, Structure 2007, Guerois et al, JMB 2002 Total: 1280 mutants, 70 proteins Randomly divided into training/test sets of 640 mutants each

Mutants with $\Delta\Delta G > 10$ excluded; fa_rep capped at 10

Optimizing for predicting changes in stability

INFP (flavoprotein)

wild type, INFP

stability-optimized score 12 redesign

Overall sequence recovery, test set: 16.5% ddG mutation correlation, R: 0.683

Rosetta trained for native sequence recovery, not stability

ddG mutation correlation, R: 0.424

criteria	energy	test set average sequence	ddG correlation,	test set average largest patch
optimized	function	recovery (%)	R	size (A2)
natives				439
ddG	refE	16.5	0.683	3715
NATAA	refE	37.7	0.424	697

Optimizing for stability and sequence recovery

wild type, INFP

stability optimized redesign

sequence recovery optimized redesign

stability and recovery optimized redesign

ddG mutation correlation, R: 0.660

		test set average	ddG	test set average
criteria	energy	sequence	correlation,	largest patch
optimized	function	recovery (%)	R	size (A2)
natives				439
ddG	refE	16.5	0.683	3715
NATAA	refE	37.7	0.424	697
NATAA+ddG	refE	34.1	0.660	1422

1

How can the Rosetta energy function be changed to prevent hydrophobic patches?

Development of a solubility score for Rosetta

Average exposed hydrophobic surface area within 10Å of a surface residue - "hydrophobic patch" size

total hydrophobic ASA, set of 1300 monomeric proteins

 $E_{surface} = \sum_{all \ surface \ res} - \ln[P(total \ hASA \ within \ IOÅ)]$

Evaluating changes in surfaceE

Redesigns with surfaceE

wild type total energy	-137.6
wild type surface energy	117.3

redesigns w/o surfaceE	term
total energy	-167.0
surface energy	142.8
run time	17'43"

redesigns w surfaceE term	
total energy	-158.7
surface energy	101.3
run time	22'30"

An optimized surfaceE energy function

wild type, INFP

stability and recovery optimized redesign

stability and recovery optimized redesign

		test set average	ddG	test set average
criteria		sequence	correlation,	largest patch
optimized	energy function	recovery (%)	R	size (A2)
natives				439
ddG	refE	16.5	0.683	3715
NATAA	refE	37.7	0.424	697
NATAA+ddG	refE	34.1	0.660	1422
NATAA+ddG	refE + surfaceE	32.7	0.659	451

Conclusion / Future Directions

- Designing with the standard Rosetta energy function gives proteins with large hydrophobic patches on the surface
- Using the surface energy term during design leads to designs with more native-like surfaces
- Native sequence recovery and ddG recovery when using the surfaceE term are comparable to other energy functions
- Moving Rosetta away from reference energies
 - Explicit unfolded state model based on fragments

Acknowledgements

- Brian Kuhlman
- Kuhlman Lab
 - Doug Renfrew
 - Steven Lewis
- Andrew Leaver-Fay
- UNC Research Computing
 - Edward Dale

UNC Department of Biochemistry and Biophysics UNC Biophysics Program

Average residue hydrophobic-ASA

 REM Relative accessibilities read from external file "/Users/ronj/Projects/naccess2.1.1/standard.data"

 REM File of summed (Sum) and % (per.) accessibilities for

 REM RES _ NUM All-atoms Total-Side Main-Chain Non-polar All polar

 REM ABS REL ABS REL ABS REL ABS REL ABS REL

 RES PRO A 9 154.71 113.7 81.88 68.3 72.83 448.8 83.28 68.9 71.44 470.3

 RES PHE A 10 135.42 67.9 105.01 64.0 30.42 86.0 105.37 63.8 30.05 87.8

 RES GLU A 11 143.47 83.3 123.95 92.0 19.52 52.0 51.13 84.8 92.35 82.5

 VAL

 RES LEU A 12 56.83 31.8 52.68 37.3 4.15 11.1 52.68 37.0 4.15 11.4

aa	<=10nb	<=13nb	<=16nb
VAL	96.397	69.151	46.306
ILE	112.334	78.985	51.073
LEU	116.176	83.098	52.291
MET	121.9	92.632	58.118
PHE	34.4	93.386	55.33
TRP	134.156	89.43	54.756
TYR	110.859	80.149	53.252
GLY	37.228	30.468	23.055
ALA	63.475	49.998	35.127
PRO	93.007	71.169	51.464
CYS	77.296	49.337	30.761
HIS	86.739	65.524	45.676
SER	46.35	36.242	26.126
ASN	35.207	25.759	18.425
ASP	41.575	30.469	21.423
GLN	51.777	39.345	29.211
GLU	58.815	43.727	31.905
THR	68.096	52.354	36.944
ARG	69.341	54.594	40.726
LYS	98.204	79.184	61.568